

EXOPLANETS – frontiers of modern planetology

Maxim Khodachenko

Institut für Weltraumforschung, Österreichische Akademie der Wissenschaften, Schmiedlstr. 6, A-8042 Graz. E-mail: maxim.khodachenko@oeaw.ac.at

CONTENT of the lecture

- **Planet definition. What are the planets?**
- **EXOPLANER DEADLER**
- **Exoplanet search methods**
- Some intriguing features of exoplanets orbital distribution

- A **planet** (from Greek πλανήτης, a derivative of the word πλάνης = "moving") is a celestial body, which
	- (a) orbits a star or stellar remnant;
	- (b) is massive enough to be rounded by its own gravity (hydrostatic equil.);
	- (c) is not too massive to cause thermonuclear fusion $(M < 13 M_{\text{Jupiter}})$;
	- (d) has cleared its neigbouring region of **planetesimals**.
- A **planetesimals** -- solid objects, arising during accumulation of planets in protoplanetary disks (a) are kept by self-gravity; (b) orbital motion is not much affected by gas drag.

Planetesimals in the solar nebula:

- objects larger than ~ 1 km (can attract gravitationally other bodies)
- most were ejected from the Solar system, or collided with larger planets
- a few may have been captured as moons (e.g., Phobos, Deimos and small moons of giant planets).
- Sometimes Planetesimals $=$ small solar system bodies, e.g. asteroids, comets

\Box

- **Theory** orbiting the Sun,
- **Sufficient mass for hydrostatic equilibrium (~ round shape)**
- has "cleared neighbourhood" around its orbit

Dwarf Planet

- \Box
- orbiting the Sun,
- sufficient mass for hydrostatic equilibrium $(\sim$ round shape)
- has , cleared neighbourhood" around its orbit.
	- **Small solar system body (SSSB)**

- Reasons for the new definitions (Planet / Dwarf planet / SSSB):
	- (a) discovery of Pluto (1930) and its moon Charon (1978) \rightarrow new estimate for M_{Pluto} (~ 1/20 M_{Mercury})
	- (b) discovery of other objects comparable to Pluto (size, orbit) \rightarrow plutinos

1996 image of Pluto & Charon (right) **ESA/Dornier UV camera FOC, NASA Hubble**

James Christy (June 22, 1978) **magnified images of Pluto on photographic plates**

- **Minor planet / planetoid** -- old official definition (before IAU 2006) for an astronomical object in orbit around the Sun that is *neither a planet nor a comet*.
	- used since the 19th century (Ceres discovery in 1801)
	- \sim > 200,000 minor planets have been discovered (asteroid & Kuiper belts)

□ The IAU states: "the term 'minor planet' may still be used, but generally the term 'small solar system body' will be preferred."

Solar system planets

- **Central star** (host star)
	- The Sun: $G2V$ (~4.57 billion years old)
- **Planets** 8 planets and 5 dwarf planets:
	- *Internal planets (Mercury, Venus, Earth, Mars)*
	- *External* planets (Jupiter, Saturn, Uranus, Neptune)
	- *Dwarf* planets (Ceres, Pluto, Haumea, Makemake, Eris)

Extrasolar planets / Exoplanets

- An **extrasolar planet**, or **exoplanet**, is a planet beyond our solar system, orbiting a star other than our Sun.
	- **at 1 September 2012:** 624 planetary systems; 778 planets 105 multiple planet systems

The "working" definition for extrasolar planets (IAU 2001, 2003) \rightarrow criteria:

- Objects with masses below the limiting mass for thermonuclear *fusion of deuterium* ($\sim 13 \text{ M}_{\text{Jupiter}}$, for the same isotopic abaundance as the Sun);
- Orbit stars or stellar remnants;
- **Minimum mass & size for an extrasolar object to be considered a planet** are the same as that used in Solar system.
- Substellar objects with masses > 13 M**Jupiter** (allow thermonuclear fusion of deuterium, *but not eneough for hydrogen burning fusion*) **brown dwarfs**
- *Free-floating objects* (not orbiting any star), in young star clusters with $masses < 13 M_{\text{Jupiter}} \rightarrow$ "sub-brown dwarfs" not planets !!!

Methods of detecting extrasolar planets (10 major)

- **Astrometry: tiny variations of a star's position**
- **Radial velocity / Doppler method: speed variations at which star moves towards/away from the Earth (observer)**
- **Pulsar timing: anomalies in the timing of pulsar's pulses.**
- **Transit method: periodic depletions of stellar btightness due to planet transit in front of the star disk**
- **Gravitational microlensing: anomalies, produced by a planet in the microlensing effect of the host star**
- **Direct imaging: image of planets directly.**
- **Polarimetry: periodic variations of polarization of the star light caused by an orbiting planet**
- **Circumstellar disks: specific features in dust distribution around stars**
- **Eclipsing binary: disturbances in the character of eclipses of double star systems**
- **Orbital phase: light variations due to changing amount of reflected light from a planet (orbital phase of a planet)**

- **Astrometry: precise measuring a star's position in the sky and observing the ways in which that position changes over time.**
	- **<u>Exavitational influence of a planet causes</u>** the star itself to move in a tiny circular or elliptical orbit about the common center of mass (barycenter).
	- Ground-based observations are not enough $precise \rightarrow observations from space (Hubble)$
	- **Characterization of exoplanetary systems,** (in combination with other methods) gives
		- *masses*,
		- *number* of planets
		- *orbit inclination*
	- **Gliese 876** system (1998, 2001, 2005)

 Radial velocity / Doppler method: measure of the speed variations at which star moves towards/away from the Earth (observer)

 \Rightarrow

displacement in the star's spectral lines (**Dopper effect**)

- **Radial velocity / Doppler method: measure of the speed variations at which star moves towards/away from the Earth (observer)**
- **Most productive technique used so far:**
	- velocity variations ≥ 1 m/s can be detected ($V_{star} << V_{planet}$);
	- used to confirm findings made by other methods (e.g., transit);
	- gives an estimate of planet *minimum mass, Mmin*; *true mass* is within 20% of *Mmin* (depends on orbit inclination relative the line of sight)

- **Radial velocity / Doppler method: measure of the speed variations at which star moves towards/away from the Earth (observer)**
- Typical example: *51 Pegasi b* (unofficially *Bellerophon*), Oct.1995
	- Parent star: *51 Pegasi* the first Sun-like star found to have a planet :
		- Yellow dwarf, in *Pegasus* constellation (~50,1 light-years)
		- Spectral type G2.5V (Sun is G2V)
		- 4–6% more massive then Sun
		- Apparent magnitude: 5.49
		- 7.5 billion years old
	- **Hot Jupiter planet 51 Pegasi b,** $T \sim 1300 \text{ K}$

- Discovery and confirmations:
	- Obs. De Haute-Provence (France), ELODIE spectrograph.
	- Lick Observatory, San Jose, CA, USA, Hamilton Spectrograph

- **Pulsar timing: anomalies in the timing of pulsar's pulses are used to track changes in its motion caused by the planets.**
- **Pulsars** are highly magnetized, rotating neutron stars (ultradense remnants of supernova) that emit beamed electromagnetic radiation.
	- Observed periods of pulses: 1.4 msec 8.5 sec;
	- **Existing pulsars emit in radio, visible light,** X-rays, and/or γ-rays;
	- The radiation can only be observed when the beam points towards the Earth.

The first discovery - in 1967 radio pulsar CP 1919 (PSR $\overline{1919+21}$)

Vela γ-ray pulsar - brightest in the sky; P = 89 msec; Ε ~ 300 MeV - 1 GeV;

Movie is constructed from images taken by Fermi Gamma-ray Large Area Space Telescope - GLAST (on orbit since 2008)

Image - from Chandra X-ray obs. (1999).

 Pulsar timing: anomalies in the timing of pulsar's pulses are used to track changes in its motion caused by the planets.

Motion of a pulsar with a planet around a common center of mass

parameters of
pulsar's orbit

- **e** enables detection of planets $\leq 1/10$ M_{Earth} (far smaller than any other method can)
- capable of detecting multi-planet system
- reveals information about planets orbital parameters.

 Traditional life forms could not survive on planets orbiting pulsars (highenergy radiation, postexplosion stage of star evolution).

- **Pulsar timing: anomalies in the timing of pulsar's pulses are used to track changes in its motion caused by the planets.**
- **PSR B1257+12** in the constellation of Virgo first pulsar having a planet (PSR 1257+12b), which is the first confirmed planet outside Solar system
	- Discoveryof pulsar in 1990 using the Arecibo radio telescope
	- Discovery of planets (b,c) in 1992 by Aleksander Wolszczan & Dale Erail
	- Discovery of small planets (a), in 1994, and (d), in 2002

First Dwarf

• Additionally, this system may have an asteroid belt (like Kuiper belt).

<u>Example 15</u> Transit method: measuring of periodic depletions of stellar</u> **btightness caused by planet transits in front of the star disk**

(M. Karrer, St.Radegund / Austria)

(M. Karrer, St.Radegund / Austria)

□ The amount by which the star dims depends on its size and on the size of the planet.

CoRoT2b, (~3.31 M^J) Serpens,2007

- **<u>E Transit method:</u>** measuring of periodic depletions of stellar **btightness caused by planet transits in front of the star disk**
- Advantages:
	- Can determine the <u>size</u> (**R**_{planet}) of a planet;
	- In combination with the radial velocity method (which gives **Mplanet**) enables determination of the planet density \Rightarrow physical properties);
	- Study of atmosphere of a transiting planet:
		- *○ chemical composition* of upper atmosphere (analysis of stellar light, passed through the atmosphere).
		- measurement of the *planet radiation* by subtraction from the light curve of the star light measured during secondary eclipse (planet behind the star)

 \Rightarrow planet's temperature; detection of clouds

<u>Exansit method:</u> measuring of periodic depletions of stellar btightness caused by planet transits in front of the star disk

Ddisadvantages.

- **Transits are only observable for planets with properly aligned orbits** (relative to observer)
- The probability to see transit **P < a/R**:
	- **a** star rarius **R** – planet orbital distance
	- a planet orbiting a sun-sized star at $1 AU \Rightarrow P \sim 0.47\%$

Method suffers from a high rate of false detections \Rightarrow additional check by other methods (usually radial-velocity method)

- **<u>E Transit method:</u>** measuring of periodic depletions of stellar **btightness caused by planet transits in front of the star disk**
- □ Space observations of transits absence of atmospheric scintillation allows improved accuracy
	- **COROT** (CNES, France) -- since Dec. 2006

Objectives:

- search for exoplanets with short orbital periods (down to Superearth mass),
- perform asteroseismology, i.e. solar-like oscillations in stars.
- *Kepler* (NASA, USA) -- since Mar. 2009

Objectives:

- monitoring of $>100,000$ stars in fixed field of view: Cygnus, Lyra and Draco
- discovery of Earth-like planets

- **Gravitational microlensing: detection of anomalies, produced by gravitational field of a planet in the microlensing effect of the host star** Distant Galaxy Lensed by Cluster Abell 2218 **HST**. WEPC₂. ACS
- **Gravitational lensing** occurs when the gravitational field of a star acts like a lens, bending the light of a distant background object
	- \Rightarrow multiple distorted, magnified, and brightened images of the background source.

Gravitational microlensing

Lensing mass is small \rightarrow different observation technique

Search for *transient changes of brightness*

- **Gravitational microlensing: detection of anomalies, produced by gravitational field of a planet in the microlensing effect of the host star**
- D Advantages:
	- Detection of Earth-like planets at moderately wide orbits (e.g., **OGLE-2005-BLG-390Lb** by M-star in *Scorpius* near the center of the *Milky Way* in Jan.2006 – 1st low-mass $(5,5M_{Earth})$ planet on a wide $(2.6AU)$ orbit at 20,000 light years)
	- Most fruitful for planets between Earth and the center of the galaxy (large number of background stars);
	- **Enables estimation of M_{Planet}** and orbital distance
	- Can be performed automatically (networks of robotic telescopes)

- **Gravitational microlensing: detection of anomalies, produced by gravitational field of a planet in the microlensing effect of the host star**
- Disadvantages:
	- **Two stars should be almost exactly aligned** \rightarrow **Lensing events are brief** lasting (weeks or days);
	- Very distant planets (several kps, $1 pc = 31 x 10^{12} km \approx 3.26$ light-years) \rightarrow limited opportunities for confirmation by other methods;
	- **EX** Lensing cannot be repeated, because the chance of alignment never occurs again;
- Discoveries:

15 planetary systems **16** planets / **1** multiple planet systems

- **Direct imaging: in certain cases modern telescopes may be capable to image planets directly.**
- □ Imaging may be possible if a planet is
	- large enough (considerably larger than Jupiter),
	- widely separated from its parent star (large orbital distance),
	- young (i.e. hot and emits intense infrared radiation).
- Discoveries:

27 planetary systems / 31 planets / 2 multiple planet system

HR 8799 system in *Pegasus* **(129 light-years): HR 8799d (bottom), HR 8799c (upper right), HR 8799b (upper left), (Keck & Gemini IR telescopes, Hawaii, Nov.2008)**

also found in Hubble/NICMOS IR images, dated by 1998

- **Direct imaging: in certain cases modern telescopes may be capable to image planets directly.**
- **Observational facilities:**
	- *Gemini North*, 8m telescope, Mauna Kea, Hawaii (4.213 m)
	- *Keck Observatory 10m telescope*, Mauna Kea, Hawaii (4.145 m)
	- *Subaru* 8.2m telescope, Mauna Kea, Hawaii (4.139 m)
	- ESO's *Very Large Telescope (VLT)* 8.2m, Paranal Obs.,Chile (2,635 m)
	- *Hubble Space Telescope*

Gemini North, Hawaii Subaru Telescope, Hawaii VLT, Paranal Obs., Chile

- **Direct imaging: in certain cases modern telescopes may be capable to image planets directly.**
- Typical example: constell. *Piscis Austrinus: Fomalhaut b* , M < 3 M**Jupiter**

Fomalhaut b (in the Fomalhaut's dust cloud) imaged by The Hubble Space Telescope's coronagraph (ACS/HRC)

Summary of discoveries (September 2012):

 627 Exoplanetary systems

 793 Exoplanets

 105 Multiple Planetary systems

Source: http://exoplanetarchive.ipac.caltech.edu/

Exoplanet mass vs. semi-major axis: *Jupiters* "family"

NASA Exoplanet Archive 2012 August 29 exoplanet archive.ipac.caltech.edu **Hot Jupiters** "family"

, , , , , , , , , , , , , , , , ,

Exoplanet mass vs. semi-major axis: *Jupiters* "family"

NASA Exoplanet Archive **Exoplanet Archive 19 2012 August 29** exoplanetarchive.ipac.caltech.edu **Hot Jupiters** "family"

.

Exoplanet mass vs. semi-major axis: Mystery of Gap ?

Scale orbital distance in units of Roche Limit (unique fore each planet)

Major questions of exoplanetary physics:

(?) *Way of formation of terrestrial type (rocky) planets*

- \rightarrow In-situ formation ?
- \rightarrow Migration ?
- \rightarrow Evolutional transformation from giant to other type planets ?

(?) *Evolution of planetary environments*

- \rightarrow Magnetic dynamo / Intrinsic magnetic field / magnetosphere
- \rightarrow Surface
- \rightarrow Atmosphere

(?) *Could life have evolved somewhere else besides of Earth ?*

- \rightarrow Definition of life / life forms
- \rightarrow Conditions for life development
	- **HABITABILITY** (criteria, key factors, etc.)

Factors, influencing planetary environments evolution:

External, space environmental factors:

- → Radiation of the host star and stellar activity
- → Astrospheric plasma environment (stellar winds, CMEs, shocks)
- → Cosmic & galactic rays
- → Stellar planetary interactions (gravitational, e.-m., etc.)

magnetic field plays an important role

Internal, planet related factors:

 \rightarrow Orbital parameters (distance to host star, eccentricity, etc.

 \rightarrow Planet mass and type (gas giant or rocky planet)

 \rightarrow Efficiency of planetary magnetic dynamo (intrinsic m. field)

 \rightarrow Atmosphere composition

SUMMARY CONCLUSIONS

- **Exoplanetology is a new fast developing branch** of modern space physics which is based on the continuously growing amount of observational data about extraterrestrial worlds.
- **Specific feature of Exoplanetology consists in its multidisciplinarity** (broad range of research directions from physics & chemistry till biology). Nowadays, strong **engineering aspect** comes, which deals with development of advanced observational techniques and preparation/realization of space missions.
- Research **expertise & knowledge from the solar system study** and other "tradi tional" space sciences are of high potential interest and importance for Exopla netology. The traditional stellar physics got new area of application.
- Exoplanetology opens **perspectives for development of "new physics"** (stellar planetary interactions, extreme conditions, new kind of planetary environments).

Thank you for attention

